NCERT QUESTIONS AND ANSWERS
1.Which average would be suitable in the following cases?
(i) Average size of readymade garments.
Ans. The demand for the average size of any readymade garment is the maximum. As, the modal value represents the value with the highest frequency, so the number of the average size to be produced is given by the Modal value
(ii) Average intelligence of students in a class.
Ans. Median will be the best measure for calculating the average intelligence of students in a class. It is the value that divides the series into two equal parts. So, number of students below and above the average intelligence can easily be estimated by median.
(iii) Average production in a factory per shift.
Ans. It is advisable to use mean for calculating the average production in a factory per shift. The average production is best calculated by arithmetic mean.
(iv) Average wage in an industrial concern.
Ans. Mean will be the most suitable measure. It is calculated by dividing the sum of wages of all the labour by the total number of labours in the industry.
(v) When the sum of absolute deviations from average is least.
Ans. When the sum of absolute deviations from average is the least, then mean could be used to calculate the average. This is an important mathematical property of arithmetic mean. The algebraic sum of the deviations of a set of n values from A.M. is 0.
(vi) When quantities of the variable are in ratios.
Ans. Median will be the most suitable measure in case the variables are in ratios. It is least affected by the extreme values
(vii)In case of open-ended frequency distribution.
Ans. In case of open ended frequency distribution, Median is the most suitable measure as it can be easily computed. Moreover, the median value can be estimated even in case of incomplete statistical series.
2.Indicate the most appropriate alternative from the multiple choices
provided against each question.
(i) The most suitable average for qualitative measurement is
(a) arithmetic mean
(b) median
(c) mode
(d) geometric mean
(e) none of the above
(ii) Which average is affected most by the presence of extreme items?
(a) median
(b) mode
(c) arithmetic mean
(d) none of the above
(iii) The algebraic sum of deviation of a set of n values from A.M. is
(a) n
(b) 0
(c) 1
(d) none of the above
[Ans. (i) b (ii) c (iii) b]
3.Comment whether the following statements are true or false.
(i) The sum of deviation of items from median is zero.
(ii) An average alone is not enough to compare series.
(iii) Arithmetic mean is a positional value.
(iv) Upper quartile is the lowest value of top 25% of items.
(v) Median is unduly affected by extreme observations.
[Ans. (i) False (ii) True (iii) False (iv) True (v) False]
4.If the arithmetic mean of the data given below is 28, find (a) the missing frequency, and (b) the median of the series:
Profit per retail shop (in Rs) | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of retail shops | 12 | 18 | 27 | – | 17 | 6 |
Ans. (i) Let the missing frequency be f1
Arithmetic Mean = 28
Profit per Retail Shop (in Rs) | No of Retail Shops | Mid Value | |
Class Interval | (f) | (m) | fm |
0 – 10 | 12 | 5 | 60 |
10 – 20 | 18 | 15 | 270 |
20 – 30 | 27 | 25 | 675 |
30 – 40 | f1 | 35 | 35f1 |
40 – 50 | 17 | 45 | 765 |
50 – 60 | 6 | 55 | 330 |
or, 2240 + 28f1 = 2100 + 35f1
or, 2240 – 2100 = 35f1 – 28f1
or, 140 = 7f1
f1 = 20
(ii)
Class Interval | Frequency
(f) |
Cumulative
Frequency (CF) |
|
0 – 10 | 12 | 12 | |
10 – 20 | 18 | 30 | |
20 – 30 | 27 | 57 | |
30 – 40 | 20 | 77 | |
40 – 50 | 17 | 94 | |
50 – 60 | 6 | 100 | |
Total |
So, the Median class = Size of item
= 50th item
50th item lies in the 57th cumulative frequency and the corresponding class interval is 20 – 30.
- The following table gives the daily income of ten workers in a factory. Find the arithmetic mean.
Workers | A | B | C | D | E | F | G | H | I | J |
Daily Income (in Rs) | 120 | 150 | 180 | 200 | 250 | 300 | 220 | 350 | 370 | 260 |
Ans
Workers | Daily Income (in Rs)
(X) |
A | 120 |
B | 150 |
C | 180 |
D | 200 |
E | 250 |
F | 300 |
G | 220 |
H | 350 |
I | 370 |
J | 260 |
Total |
N = 10
Arithmetic mean = Rs 240
- Following information pertains to the daily income of 150 families. Calculate the arithmetic mean.
Income (in Rs) | Number of families |
More than 75 | 150 |
More than 85 | 140 |
More than 95 | 115 |
More than 105 | 95 |
More than 115 | 70 |
More than 125 | 60 |
More than 135 | 40 |
More than 145 | 25 |
Ans.
Income | No. of families | Frequency | Mid Value | fm |
Class Interval | (CF) | (f) | (m) | |
75 – 85 | 150 | 150 – 140 = 10 | 80 | 800 |
85 – 95 | 140 | 140 – 115 = 25 | 90 | 2250 |
95 – 105 | 115 | 115 – 95 = 20 | 100 | 2000 |
105 – 115 | 95 | 95 – 70 = 25 | 110 | 2750 |
115 – 125 | 70 | 70 – 60 = 10 | 120 | 1200 |
125 – 135 | 60 | 60 – 40 = 20 | 130 | 2600 |
135 – 145 | 40 | 40 – 25 = 15 | 140 | 2100 |
145 – 155 | 25 | 25 | 150 | 3750 |
Total |
= Rs 116.33
L
- The size of land holdings of 380 families in a village is given below. Find the median size of land holdings.Find the median size of land holdings.
Size of Land Holdings (in acres) | Less than 100 | 100 – 200 | 200 – 300 | 300 – 400 | 400 and above |
Number of families | 40 | 89 | 148 | 64 |
Ans
Size of Land Holdings
Class Interval |
No. of Families
(f) |
Cumulative Frequency
(CF) |
0 – 100 | 40 | 40 |
100 – 200 | 89 | 129 |
200 – 300 | 148 | 277 |
300 – 400 | 64 | 341 |
400 – 500 | 39 | 380 |
Total |
So, the Median class = Size of item = 190th item
190th item lies in the 129th cumulative frequency and the corresponding class interval is 200 – 300.
Median size of land holdings = 241.22 acres
8.The following series relates to the daily income of workers employed in. a firm. Compute (a) highest income of lowest 50% workers (b) minimum income earned by the top 25% workers and (c) maximum income earned by lowest 25% workers.
Daily Income (in Rs) | 10 – 14 | 15 – 19 | 20 – 24 | 25 – 29 | 30 – 34 | 35 – 39 |
Number of workers | 5 | 10 | 15 | 20 | 10 | 5 |
(Hint: Compute median, lower quartile and upper quartile)
9.The following series relates to the daily income of workers employed in. a firm. Compute (a) highest income of lowest 50% workers (b) minimum income earned by the top 25% workers and (c) maximum income earned by lowest 25% workers.
Daily Income (in Rs) | 10 – 14 | 15 – 19 | 20 – 24 | 25 – 29 | 30 – 34 | 35 – 39 |
Number of workers | 5 | 10 | 15 | 20 | 10 | 5 |
(Hint: Compute median, lower quartile and upper quartile)
Ans.
Daily Income
(in Rs) Class Interval |
No. of Workers
(f) |
Cumulative frequency
(CF) |
9.5 – 14.5 | 5 | 5 |
14.5 – 19.5 | 10 | 15 |
19.5 – 24.5 | 15 | 30 |
24.5 – 29.5 | 20 | 50 |
29.5 – 34.5 | 10 | 60 |
34.5 – 39.5 | 5 | 65 |
(a) Highest income of lowest 50% workers
32.5th item lies in the 50th cumulative frequency and the corresponding class interval is 24.5 – 29.5.
(b) Minimum income earned by top 25% workers
In order to calculate the minimum income earned by top 25% workers, we need to ascertain Q3.
48.75th item lies in 50th item and the corresponding class interval is 24.5 – 29.5.
(c) Maximum income earned by lowest 25% workers
In order to calculate the maximum income earned by lowest 25% workers, we need to ascertain Q1.
16.25th item lies in the 30th cumulative frequency and the corresponding class interval is 19.5 – 24.5
- The following table gives production yield in kg. per hectare of wheat of 150 farms in a village. Calculate the mean, median and mode values.
Production yield (kg. per hectare) | 50 – 53 | 53 – 56 | 56 – 59 | 59 – 62 | 62 – 65 | 65 – 68 | 68 – 71 | 71 – 74 | 74 – 77 |
Number of farms | 3 | 8 | 14 | 30 | 36 | 28 | 16 | 10 | 5 |
Ans
(i) Mean
Production Yield | No. of farms | Mid value | A = 63.5 | ||
50 – 53 | 3 | 51.5 | –12 | –4 | –12 |
53 – 56 | 8 | 54.5 | –9 | –3 | –24 |
56 – 59 | 14 | 57.5 | –6 | –2 | –28 |
59 – 62 | 30 | 60.5 | –3 | –1 | –30 |
62 – 65 | 36 | 63.5 | 0 | 0 | 0 |
65 – 68 | 28 | 66.5 | +3 | +1 | 28 |
68 – 71 | 16 | 69.5 | +6 | +2 | 32 |
71 – 74 | 10 | 72.5 | +9 | +3 | 30 |
74 – 77 | 5 | 75.5 | +12 | +4 | 20 |
Total |
= 63.5 + 0.32
= 63.82 kg per hectare
(ii) Median
Class Interval | Frequency
(f) |
CF |
50 – 53 | 3 | 3 |
53 – 56 | 8 | 11 |
56 – 59 | 14 | 25 |
59 – 62 | 30 | 55 |
62 – 65 | 36 | 91 |
65 – 68 | 28 | 119 |
68 – 71 | 16 | 135 |
71 – 74 | 10 | 145 |
74 – 77 | 5 | 150 |
Total |
75th item lies in the 91st cumulative frequency and the corresponding class interval is 62 – 65.
(iii) Mode
Grouping Table | |||||||||
Class Interval | I | II | III | IV | V | VI | |||
50 – 53 | 3 | ||||||||
11 | 22 | 25 | 52 | ||||||
53 – 56 | 8 | ||||||||
56 – 59 | 14 | ||||||||
44 | |||||||||
59 – 62 | 30 | ||||||||
62 – 65 | |||||||||
44 | 54 | ||||||||
65 – 68 | 28 | ||||||||
68 – 71 | 16 | ||||||||
26 | 15 | 31 | |||||||
71 – 74 | 10 | ||||||||
74 – 77 | 5 | ||||||||
Analysis Table
Column | 50 – 53 | 53 – 56 | 56 – 59 | 59 – 62 | 62 – 65 | 65 – 68 | 68 – 71 | 71 – 74 | 74 – 77 |
I | √ | ||||||||
II | √ | √ | |||||||
III | √ | √ | |||||||
IV | √ | √ | √ | ||||||
V | √ | √ | √ | ||||||
VI | √ | √ | √ | ||||||
Total | – | – | 1 | 3 | 6 | 3 | 1 | – | – |
Modal class = 62 – 65