NCERT Exemplar Class 11 Chemistry Chapter 13 Hydrocarbons

NCERT Exemplar Class 11 Chemistry Chapter 13 Hydrocarbons are part of NCERT Exemplar Class 11 Chemistry. Here we have given NCERT Exemplar Class 11 Chemistry Chapter 13 Hydrocarbons.

NCERT Exemplar Class 11 Chemistry Chapter 13 Hydrocarbons

Multiple Choice Questions
Single Correct Answer Type

Q1. Arrange the following in decreasing order of their boiling points.
(A) n-Butane
(B) 2-Methylbutane
(C) n-Pentane
(D) 2,2-Dimethylpropane
(a) A > B > C > D
(b) B > C > D > A
(c) D>C>B>A
(d) C >B>D > A
Sol: (d) As the number of carbon atom increases, boiling point increases. Boiling point decreases with branching.

image1

Also See: NCERT Exemplar Class 11 Chemistry Chapter 12 Organic Chemistry: Some Basic Principles and Techniques

Q2. Arrange the halogens F2, Cl2, Br2 and I2 in order of their increasing reactivity with alkanes.
(a) I2 < Br2 < Cl2 < F2
(b) Br2 < Cl2 < F2 < I2
(c) F2 < Cl2 < Br2 < I2                               
(d) Br2 < I2 < Cl2 < F2
Sol:(a) The reactivity order of halogens with alkanes is I2 < Br2 < Cl2 < F2

Q3. The increasing order of reduction of alkyl halides with zinc and dilute HCl is
(a) R-C1<R-I<R-Br
(b) R-Cl<R-Br<R-I
(c) R -1 < R – Br < R – Cl
(d) R-Br<R-I<R-Cl
Sol:(b) The reactivity of reduction bf alkyl halides with Zn/HCl increases as the strength of the C – X bond decreases, i.e., R – Cl < R – Bf < R -I.

Q4. The correct IUPAC name of the following alkane is

image2

(a) 3,6-Diethyl-2-methyloctane
(b) 5-Isopropyl-3-ethyloctane
(c) 3-Ethyl-5-isopropyloctane
(d) 3-Isopropyl-6-ethyloctane

image3

Q5. The addition of HBr to 1 -butene gives a mixture of products (A), (B) and (C).

image4

(C) CH3 – CH2 – CH2 – CH2 – Br
The mixture consists of
(a) (A) and (B) as major and (C) as minor products
(b) (B) as major, (A) and (C) as minor products
(c) (B) as minor, (A) andj(C) as major products
(d) (A) and (B) as minor and (C) as major products.
Sol: (a) The alkene is unsymmetrical, hence will follow Markovnikov rule to give major product.

image5

Since I contains a chiral carbon, it exists in two enantiomers (A and B) which are mirror image of each other.

image6

Q6. Which of the following will not show geometrical isomerism?

image7

image8

Q7. Arrange the following hydrogen halides in order of their decreasing reactivity with propene.
(a) HC1 > HBr > HI
(b) HBr>HI>HCl
(c) HI > HBr > HCl
(d) HCl>HI>HBr
Sol: (c) The decreasing order of reactivity of hydrogen halides with propene is HI > HBr > HC1. As the size of halogen increases, the strength of H – X bond decreases and hence, reactivity increases.

Q8. Arrange the following carbanions in order of their decreasing stability.
(A) H3C-C C                                        
(B) H-C C
(C) H3C – CH2
(a) A>B>C
(b) B>A>C
(c) C>B>A
(d) C>A>B

Sol: (b) The order of decreasing stability of carbanions is:

image9


sp-hybridised carbon atom is more electronegative than sp3-hybridised carbon atom and hence, can accommodate the negative charge more effectively. – CH3 group has +1 effect, therefore, it intensifies the negative charge and, hence, destabilises the carbanion CH3 C = C.

Q9. Arrange the following alkyl halides in decreasing order of the rate of β -elimination reaction with alcoholic KOH.

image10

image11

is the order of rate of β -elimination with alcoholic KOH.

image12

More the number of β-substituents (alkyl groups), more stable alkene will be formed on β -elimination and more will be the reactivity. Thus, the decreasing order of the rate of β -elimination reaction with alcoholic KOH is: A > C > B.

Q10. Which of the following reactions of methane is incomplete combustion?

image13

Sol: (c) Dining incomplete combustion of alkanes with insufficient amount of air or dioxygen, carbon black is formed which is used in the manufacture of ink, printer ink, black pigments and as filters. Thus,

image14

More than One Correct Answer Type

Q11. Some oxidation reactions of methane are given below. Which of them is/are controlled oxidation reactions?

image15

Reactions in which methane does not undergo complete combustion to give carbon dioxide and water or incomplete combustion to give carbon and water are controlled oxidation reactions.

Q12. Which of the following alkenes on ozonolysis gives a mixture of ketones only?

image16

Sol: (c, d) Alkenes which have two substituents on each carbon atom of the double bond give a mixture of ketones on ozonolysis. Thus, options (c) and (d) give mixture of ketones.

image17

Q13. Which are the correct IUPAC names of the following compound?

image18
(a) 5-Buty 1-4-i sopropyldecane
(b) 5-Ethyl-4-propyldecane
(c) 5-sec-Butyl-4-iso-propyldecane
(d) 4-( 1 -Methylethyl)-5-( 1 -methylpropyl)decane

Sol: (c,d)

image19

Q14. Which are the correct IUPAC names of the following compound

image20

(a) 5-(2′,2′-Dimethylpropyl)decane
(b) 4-Butyl-2,2-dimethylnonane
(c) 2,2-Dimethyl-4-pentyloctane
(d) 5-neo-Pentyldecane
Sol: (a,d)

image21

Q15. For an electrophilic substitution reaction, the presence of a halogen atom in the benzene ring ;
(a) deactivates the ring by inductive effect
(b) deactivates the ring by resonance
(c) increases the charge density at ortho and para-positions relative to meta-position by resonance
(d) directs the incoming electrophile to meta-position by increasing the
charge density relative to ortho and para-positions. ‘
Sol: (a, c) For an electrophilic substitution reaction, the presence of halogen atom in the benzene ring deactivates the ring by inductive effect and increases the charge density at ortho- and para-position relative to meta-position by resonance. –
When chlorine is attached to a benzene ring, chlorine being more electronegative pulls the electrons because of its -1-effect. The electron cloud of benzene becomes less dense. Thus, chlorine makes the benzene ring in aryl halide somewhat deactivated. But due to resonance, the electron density on ortho- and para-positions is greater than on meta-position.

image22

Q16. In an electrophilic substitution reaction of nitrobenzene, the presence of nitro group ________ ‘
(a) deactivates the ring by inductive effect
(b) activates the ring by inductive effect
(c) decreases the charge density at ortho- and para-positions of the ring relative to meta-position by resonance
(d) increases the charge density at meta-position relative to the ortho and para-positions of the ring by resonance
Sol: (a, c) Nitro group by virtue of-I-effect withdraws electrons from the ring and increases the charge and destabilizes carbocation.

image23

In ortho, para-attack of an electrophile on nitrobenzene, we are getting two structures (A) and (B) in which positive charge is appearing on the carbon atom directly attached to the nitro group.
As the nitro group is electron-withdrawing by nature, it decreases the stability of such product and hence meta attack is more feasible when electron-withdrawing substituents are attached.

Also See: NCERT Solutions for Class 11 Chemistry Chapter 6 Thermodynamics

Q17. Which of the following is correct?
(a) CH3 – O – CH+2 is more stable than CH3 – CH+2
(b) (CH3)2CH+ is less stable than CH3 – CH2 – CH+2
(c) CH2 = CH – CH+2 is more stable than CH3 – CH2 – CH+2
(d) CH2 = CH+ is more stable than CH3 – CH+2

image24

image25

Q18. Four structures are given in options (a) to (d). Examine them and select the aromatic structures.

image26

Sol: (a, c) In both these options, rings are planar and follow (4n + 2)π-electrons rule

image27

Cyclooctatetraene is non-planar and has 8π-electrons. It is not aromatic. Cyclopropenyl anion is planar but has 4 π -electrons. It is not aromatic.

Q19. The molecules having dipole moment are________ .
(a) 2,2-Dimethylpropane                      
(b) trans-Pent-2-ene
(c) cw-Hex-3-ene            
(d) 2,2,3,3-Tetramethylbutane

image28
Since, the +1 effect of CH2CH3 group is higher than that of CH3 group, therefore, the dipole moments of C-CH3 and C-CH2CH3 bonds are unequal. Although these two dipoles oppose each other, yet they do not exactly cancel out each other and hence trans-2-pentene has small but finite dipole moment.
In cis-hex-3-ene, although the dipole moments of the two C – CH2CHbond are equal, but they are inclined to each other at an angle of 60° and hence have a finite dipole moment.

Short Answer Type Questions
Q20. Why do alkenes prefer to undergo electrophilic addition reaction while arenes prefer electrophilic substitution reaction? Explain.
Sol: Due to the presence of a π -electron cloud above and below the plane of alkenes and arenes, these are electron rich molecules and, therefore, provide sites for the attack of electrophiles. Hence, they undergo electrophilic reactions. Alkenes undergo electrophilic addition reactions because they are unsaturated molecules. For example,

image29

Arenes, on the other hand, cannot undergo electrophilic addition reactions. This is because benzene has a large resonance energy of 150.4 kJ mol-1. During electrophilic addition reactions, two new σ-bonds are formed but the aromatic character of benzene gets destroyed and, therefore, resonance energy of benzene ring is lost. Hence, electrophilic addition reactions of arenes are not energetically favourable. Arenes, in contrast, undergo electrophilic substitution reactions in which σ C – H bond is broken and new σ C – X bond is formed: The aromatic character of benzene ring is not destroyed and benzene retains its resonance energy. Hence, arenes undergo electrophilic substitution reactions.

Q21. Alkynes on reduction with sodium in liquid ammonia form trans alkenes. Will butene formed on the reduction of but-2-yne show geometrical isomerism?

image30

Thus, but-2-ene is capable of showing geometrical isomerism.

Q22. Rotation around carbon-carbon single bond of ethane is not completely free. Justify the statement.
Sol: Ethane contains carbon-carbon sigma (σ) bond. Electron distribution of the sigma molecular orbital is symmetrical around the intemuclear axis of the C – C bond which is not disturbed due to rotation about its axis. This permits free rotation around aC-C single bond. However, rotation around a C – C single bond is not completely free. It is hindered by a small energy barrier due to weak repulsive interaction between the adjacent bonds. Such a type of repulsive interaction is called torsional strain. Of all the conformations of ethane, the staggered form has the least torsional strain and the eclipsed form has the maximum torsional strain. The energy difference between the two extreme forms is of the order of 12.5 kJ mol-1, which is very small. It has not been possible to separate and isolate different conformational isomers of ethane.

Q23. Draw Newman and Sawhorse projections for the eclipsed and staggered conformations of ethane. Which of these conformations is more stable and why? .

image31
In staggered form of ethane, the electron clouds of carbon-hydrogen bonds are as far apart as possible. Thus, there are minimum repulsive forces, minimum energy and maximum stability of the molecule. On the other hand, when the staggered form changes into the eclipsed form, the electron clouds of the carbon-hydrogen bonds come closer to each other resulting in increase in electron cloud repulsions. To check the increased repulsive forces, molecule will have to possess more energy and thus has lesser stability.

Q24. The intermediate carbocation formed in the reactions of HI, HBr and HC1 with propene is the same and the bond energy of HCl, HBr and HI is 430.5 kJ mol-1,363.7 kJ mol–1 and 296.8 kJ mol-1 What will be the other of reactivity of these halogen acids?
Sol: The bond dissociation enthalpy decreases in the order HC1 > HBr > HI, therefore, the order of reactivity is in the reverse order i.e., HI > HBr > HCl.

Q25. What will be the product obtained as a result of the following reaction and why?

image32

image33

Propyl chloride forms CH3 – CH2 – CH+2 with anhydrous A1C13 which is less stable. This rearranges to a more stable carbocation as:

image34

Q26. How will you convert benzene into

(i) p-nitrobromobenzene (ii) m-nitrobromobenzene

image35
Q27. Arrange the following set of compounds in the order of their decreasing. relative reactivity with an electrophile. Give reason.

image36

Sol: The methoxy group (-OCH3) is the electron releasing group. It increases the electron density in beniene nucleus due to

resonance effect (+R-effect). Hence, it makes anisole more reactive than benzene towards the electrophile.

image37

In case of alkyl halides, the electron density increases at ortho and para positions due to +R effect. However, the halogen atom also withdraws electrons from the ring because of its -I effect. Since the -I effect is stronger than the +R effect, the halogens are moderately deactivating. Thus, overall electron density on benzene ring decreases, which makes further substitution difficult.
-N02 group is electron withdrawing group. It decreases the electron density in benzene nucleus due to its strong -R-effect and strong -I-effect. Hence, it makes nitrobenzene less reactive. Therefore, overall reactivity of these three compounds towards electrophiles decreases in the following order:

image38

Q28. Despite their -I effect, halogens are o- andp-direction in haloarenes. Explain.
Sol: In case of aryl halides, halogens are little deactivating because of their strong -I effect. Therefore, overall electron density on the benzene ring decreases. In other words, halogens are deactivating due to -I effect. However, because of the +R-effect, i.e., participation of lone pairs of electrons on the halogen atom with the π-electrons of the benzene ring, the electron density increases more at o- and p-positions than at m-positions.

image39

As a result, halogens are o-, p-directing. The combined result of +R-effect and -I-effect of halogens is that halogens are deactivating but o, p-directing.

Q29. Why does the presence of a nitro group-make the benzene ring less reactive in comparison to the unsubstituted benzene ring? Explain.
Sol: Nitro group is an electron-withdrawing group (-R and -I effects). It deactivates the ring by decreasing nucleophilicity for further substitution.

image40

Q30. Suggest a route for the preparation of nitrobenzene starting from acetylene.
Sol: Acetylene when passed through red hot iron tube at 500°C undergoes cyclic polymerisation to give benzene which upon nitration gives nitrobenzene.

image41

Q31. Predict the major product(s) of the following reactions and explain their formation.

image42
Sol: Addition of HBr to unsymmetrical alkenes follows Markonikov rule. It states that negative part of the addendum (adding molecule) gets attached to that carbon atom which possesses lesser number of hydrogen atoms.
Mechanism: Hydrogen bromide provides an electrophile, H+, which attacks the double bond to form carbocation as shown below:

image43
Addition reaction of HBr to unsymmetrical alkenes in the presence of peroxide follows anti-Markovnikov rule.
Mechanism: Peroxide effect proceeds via free radical chain mechanism as given below:

image44

image45

Q32. Nucleophiles and electrophiles are reaction intermediates having electron rich and electron deficient centres respectively. Hence, they tend to attack electron deficient and electron rich centres respectively. Classify the following species as electrophiles and nucleophiles.

image46

image47

Q33. The relative reactivity of 1°, 2° and 3° hydrogens towards chlorination is 1: 3.8 : 5. Calculate the percentages of all monochlorinated products obtained from 2-methylbutane.

image48

image49

image50

Q34. Write the structures and names of products obtained in the reactions of sodium with a mixture of l-iodo-2-methylpropane and 2-iodopropane.

image51

image52

Kunji Team

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!